In order to produce doubled-haploid maize plants tolerant of oxidative stress, in vitro microspore selection was carried out in anther culture with reactive oxygen species (ROS) progenitors such as paraquat, menadione, tert-butylhydroperoxide (t-BHP), and methionine combined with riboflavin. All the ROS progenitors reduced the anther induction, the formation of microspore-derived structures, and their regeneration potential. Abnormal cell divisions and progeny cell degradation could be observed during the development of microspores treated with ROS progenitors. Menadione and t-BHP influenced the microspore developmental pathway, as menadione induced the formation of embryoids, while t-BHP increased the proportion of calli in the microspore-derived structures. As the result of in vitro selection, 15, 10, 10, and 3 fertile doubled-haploid plants were obtained in cultures treated with paraquat, t-BHP, methionine combined with riboflavin, and menadione, respectively.