Background and purpose: Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive sensory nerves induce local neurogenic inflammation; somatostatin exerts systemic anti-inflammatory actions presumably via sst4/sst1 receptors. This study investigates the effects of a high affinity, sst4-selective, synthetic agonist, J-2156, on sensory neuropeptide release in vitro and inflammatory processes in vivo.
Experimental approach: Electrically-induced SP, CGRP and somatostatin release from isolated rat tracheae was measured with radioimmunoassay. Mustard oil-induced neurogenic inflammation in rat hindpaw skin was determined by Evans blue leakage and in the mouse ear with micrometry. Dextran-, carrageenan- or bradykinin-induced non-neurogenic inflammation was examined with plethysmometry or Evans blue, respectively. Adjuvant-induced chronic arthritis was assessed by plethysmometry and histological scoring. Granulocyte accumulation was determined with myeloperoxidase assay and IL-1beta with ELISA.
Key results: J-2156 (10-2000 nM) diminished electrically-evoked neuropeptide release in a concentration-dependent manner. EC50 for the inhibition of substance P, CGRP and somatostatin release were 11.6 nM, 14.3 nM and 110.7 nM, respectively. J-2156 (1-100 microg kg(-1) i.p.) significantly, but not dose-dependently, inhibited neurogenic and non-neurogenic acute inflammatory processes and adjuvant-induced chronic oedema and arthritic changes. Endotoxin-evoked myeloperoxidase activity and IL-1beta production in the lung, but not IL-1beta- or zymosan-induced leukocyte accumulation in the skin were significantly diminished by J-2156.
Conclusions and implications: J-2156 acting on sst4 receptors inhibits neuropeptide release, vascular components of acute inflammatory processes, endotoxin-induced granulocyte accumulation and IL-1beta synthesis in the lung and synovial and inflammatory cells in chronic arthritis. Therefore it might be a promising lead for the development of novel anti-inflammatory drugs.