The aggregation of amyloid beta-peptide [Abeta(1-40)] into fibril is a key pathological process associated with Alzheimer's disease. The effect of cationic gemini surfactant hexamethylene-1,6-bis-(dodecyldimethylammonium bromide) [C(12)H(25)(CH(3))(2)N(CH(2))(6)N(CH(3))(2)C(12)H(25)]Br(2) (designated as C(12)C(6)C(12)Br(2)) and single-chain cationic surfactant dodecyltrimethylammonium bromide (DTAB) on the Alzheimer amyloid beta-peptide Abeta(1-40) aggregation behavior was studied by microcalorimetry, circular dichroism (CD), and atomic force microscopy (AFM) measurements at pH 7.4. Without addition of surfactant, 0.5 g/L Abeta(1-40) mainly exists in dimeric state. It is found that the addition of the monomers of C(12)C(6)C(12)Br(2) and DTAB may cause the rapid aggregation of Abeta(1-40) and the fibrillar structures are observed by CD spectra and the AFM images. Due to the repulsive interaction among the head groups of surfactants and the formation of a small hydrophobic cluster of surfactant molecules, the fibrillar structure is disrupted again as the surfactant monomer concentration is increased, whereas globular species are observed in the presence of micellar solution. Different from single-chain surfactant, C(12)C(6)C(12)Br(2) has a much stronger interaction with Abeta(1-40) to generate larger endothermic energy at much lower surfactant concentration and has much stronger ability to induce the aggregation of Abeta(1-40).