Early experiences have profound influences on individual developmental trajectories. For example alcohol exposure during central nervous system development relates to a number of pathological consequences in adulthood. An increased risk of developing psychiatric disorders, like major depression and impulse-control-related pathologies is associated with alcohol exposure during fetal life and/or during adolescence. Additionally, adverse life experiences occurring early in development may exacerbate these consequences, while impinging on the same neural systems affected by precocious alcohol exposure. Conversely, a protective and/or stimulating environment may mitigate these alcohol-related negative outcomes. Experimental research in animal models constitutes a primary source of information in understanding both functional and dysfunctional human adaptations to these events. In this review, a selection of rodent and primate studies shows that developmental ethanol exposure on the one hand, and environmental treatments aimed at modifying the mother-offspring interaction on the other hand, independently modulate similar neuro-endocrine systems. In particular, we discuss the effects that the above-mentioned independent variables exert on the hypothalamic-pituitary-adrenal (HPA)-axis and on brain serotonergic pathways. Experimental evidence indicates that pathological adaptations of these systems are valuable predictors of human neuro-behavioral abnormalities like depression, impaired impulse control and alcohol abuse. Finally, a working hypothesis is proposed, which combines primate and rodent studies aimed: (i) at studying functional and pathological individual development following early ethanol consumption, and (ii) at heading towards a better definition of potential intervention strategies.