We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems.