Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy

Acta Ophthalmol Scand. 2006 Oct;84(5):684-92. doi: 10.1111/j.1600-0420.2006.00716.x.

Abstract

Purpose: To correlate certain levels of lens opacification with high-resolution magic-angle spinning proton nuclear magnetic resonance (HR-MAS (1)H NMR) spectroscopy analysis of the biochemical changes in rat lenses in a selenite cataract model.

Methods: Selenite cataract was induced by injecting 13-day-old Sprague-Dawley rat pups with a single subcutaneous dose of sodium selenite (3.28 mg/kg in 0.9% sodium chloride solution). Lens opacification was observed using a photographic slit-lamp microscope at selected time-points 3, 6 and 9 days after selenite injection and was then graded (levels 0, 1 and 2). The animals were killed after the slit-lamp microscopy, lenses were removed and HR-MAS (1)H NMR spectra from intact lenses were obtained. Relative changes in metabolite concentrations were determined after comparison with matched lenses from untreated animals.

Results: Photographic slit-lamp microscopy revealed different stages of cataract in all animals treated with selenite. In the high quality HR-MAS (1)H NMR spectra of the lenses, more than 30 different metabolites were identified in each lens. With the exception of taurine, the concentrations of all amino acids showed a significant increase (p < 0.05) in the second level of cataract. By contrast, glutathione (GSH), succinate and phosphocholine concentrations were significantly reduced.

Conclusions: For the first time, this study demonstrates the potential to correlate the level of lens opacification with the biochemical changes obtained with HR-MAS (1)H NMR spectroscopy analysis in a selenite cataract model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / metabolism*
  • Animals
  • Animals, Newborn
  • Cataract / chemically induced
  • Cataract / metabolism*
  • Cataract / pathology
  • Crystallins / metabolism
  • Disease Models, Animal*
  • Glutathione / metabolism*
  • Injections, Subcutaneous
  • Lens, Crystalline / drug effects
  • Lens, Crystalline / metabolism*
  • Nuclear Magnetic Resonance, Biomolecular*
  • Phosphorylcholine / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Sodium Selenite / toxicity
  • Succinic Acid / metabolism

Substances

  • Amino Acids
  • Crystallins
  • Phosphorylcholine
  • Succinic Acid
  • Glutathione
  • Sodium Selenite