Context: Lipoid congenital adrenal hyperplasia is a severe disorder of adrenal and gonadal steroidogenesis caused by mutations in the steroidogenic acute regulatory protein (StAR). Affected children typically present with life-threatening adrenal insufficiency in early infancy due to a failure of glucocorticoid (cortisol) and mineralocorticoid (aldosterone) biosynthesis, and 46,XY genetic males have complete lack of androgenization and appear phenotypically female due to impaired testicular androgen secretion in utero.
Objective: The objective of this study was to investigate whether nonclassic forms of this condition exist.
Patients and methods: Sequence analysis of the gene encoding StAR was undertaken in three children from two families who presented with primary adrenal insufficiency at 2-4 yr of age; the males had normal genital development. Identified mutants were tested in a series of biochemical assays.
Results: DNA sequencing identified homozygous StAR mutations Val187Met and Arg188Cys in these two families. Functional studies of StAR activity in cells and in vitro and cholesterol-binding assays showed these mutants retained approximately 20% of wild-type activity.
Conclusions: These patients define a new disorder, nonclassic lipoid congenital adrenal hyperplasia, and represent a new cause of nonautoimmune Addison disease (primary adrenal failure).