Recently, it has become obvious that not only CD8 T-cells, but also CD4 T-helper cells are required for the induction of an effective, long-lasting cellular immune response. In view of the clinical importance of cytomegalovirus (CMV) and human immunodeficiency virus (HIV) infection, we developed 2 strategies to simultaneously reactivate viral antigen-specific memory CD4 and CD8 T-cells of CMV-seropositive and HIV-seropositive subjects using mRNA-electroporated autologous CD40-activated B cells. In the setting of HIV, we provide evidence that CD40-activated B cells can be cultured from HAART-naive HIV-1 seropositive patients. These cells not only express and secrete the HIV p24 antigen after electroporation with codon-optimized HIV-1 gag mRNA, but can also be used to in vitro reactivate Gag antigen-specific interferon-gamma-producing CD4 and CD8 autologous T-cells. For the CMV-specific approach, we applied mRNA coding for the pp65 protein coupled to the lysosomal-associated membrane protein-1 to transfect CD40-activated B cells to induce CMV antigen-specific CD4 and CD8 T-cells. More detailed analysis of the activated interferon-gamma-producing CMV pp65 tetramer positive CD8 T-cells revealed an effector memory phenotype with the capacity to produce interleukin-2. Our findings clearly show that the concomitant activation of both CD4 and CD8 (memory) T-cells using mRNA-electroporated CD40-B cells is feasible in CMV and HIV-1-seropositive persons, which indicates the potential value of this approach for application in cellular immunotherapy of infectious diseases.