To study the molecular mechanisms underlying breast cancer metastasis, gene expression profile analysis was performed on two well-established breast cancer cell lines with high and low metastatic potentials: MDA-MB-435HM and MDA-MB-435LM. The analysis was conducted using cDNA microarrays containing 8000 genes. Of 60 differentially expressed genes, ALL1-fused gene from chromosome 1q (AF1Q), a putative oncogene not described previously in breast cancer, was identified and found to be over-expressed in MDA-MB-435HM cells compared with MDA-MB-435LM cells. The results indicate that AF1Q may play an important role in breast cancer metastasis. To test this hypothesis, we generated an AF1Q high-expression cell line by stable transfection of AF1Q cDNA into MDA-MB-435LM cells. Results showed that over-expression of AF1Q led to a marked increase in the invasive and metastatic potential of MDA-MB-435LM cells in vitro and in vivo, accompanied by the up-regulation of matrix metalloproteinase-2 (MMP-2), MMP-9, transcription factor Ets-1, and RhoC expression in both mRNA and protein levels. Consistent with this observation, reduced AF1Q expression in MDA-MB-435HM cells by small interfering RNA (siRNA) resulted in a significant decrease in the invasive potential of MDA-MB-435HM cells in vitro and in the protein expression of MMP-2, MMP-9, Ets-1, and RhoC, compared with either parental or non-silencing control cells. These data provide functional evidence that oncogene AF1Q may be a novel mediator of metastasis promotion in human breast cancer through regulation of the MMP pathway and RhoC expression.