The release of excessive Zn(2+) from presynaptic boutons into extracellular regions contributes to neuronal apoptotic events, which result in neuronal cell death. However, the mechanisms of Zn(2+)-induced neuronal cell death are still unclear. Therefore, we investigated the dynamics of intracellular Zn(2+), calcium, and reactive oxygen species in PC12 cells. The addition of Zn(2+) produced cell death in a concentration- and time-dependent manner. (45)Ca(2+) influx occurred just after the treatment with Zn(2+), although subsequent hydroxyl radical ((*)OH) production did not begin until 3 h after Zn(2+) exposure. (*)OH production was significantly attenuated in Ca(2+)-free medium or by L-type Ca(2+) channel antagonist treatment, but it was independent of the intracellular Zn(2+) content. Dantrolene treatment had no protective effects against Zn(2+)-induced cell death. Treatment with N-acetyl-L-cysteine blocked (*)OH generation and subsequent cell death. These data indicate that Ca(2+) influx and subsequent (*)OH production are critical events in Zn(2+)-induced toxicity in PC12 cells.