Objective: We have previously reported the up-regulation of matrix metalloproteinase 10 (MMP-10) following treatment with the procatabolic stimulus of interleukin-1 (IL-1) and oncostatin M (OSM) in chondrocytes. Although MMP-10 is closely related to MMP-3, little is known about the role of MMP-10 in cartilage catabolism. The purpose of this study was to determine whether MMP-10 is expressed in connective tissue cells and to assess how it may contribute to cartilage collagenolysis.
Methods: MMP gene expression was assessed by real-time polymerase chain reaction using RNA from human articular chondrocytes and synovial fibroblasts stimulated with IL-1 plus OSM or tumor necrosis factor alpha (TNFalpha) plus OSM. Synovial fluid levels of MMP-10 were determined by specific immunoassay. Recombinant procollagenases were used in activation studies. Immunohistochemistry assessed MMP-10 expression in diseased joint tissues.
Results: MMP-10 expression was confirmed in both chondrocytes and synovial fibroblasts following stimulation with either IL-1 plus OSM or TNFalpha plus OSM, and MMP-10 was detected in synovial fluid samples from patients with various arthropathies. Exogenous MMP-10 significantly enhanced collagenolysis from IL-1 plus OSM-stimulated cartilage, and MMP-10 activated proMMP-1, proMMP-8, and proMMP-13. Immunohistochemistry revealed the presence of MMP-10 in the synovium and cartilage of an IL-1 plus OSM-induced model of arthritis as well as in samples of diseased human tissues.
Conclusion: We confirm that both synovial fibroblasts and articular chondrocytes express MMP-10 following treatment with procatabolic stimuli. Furthermore, the detectable levels of synovial fluid MMP-10 and the histologic detection of this proteinase in diseased joint tissues strongly implicate MMP-10 in the cartilage degradome during arthritis. The ability of MMP-10 to superactivate procollagenases that are relevant to cartilage degradation suggests that this activation represents an important mechanism by which this MMP contributes to tissue destruction in arthritis.