Ecdysteroids coordinate development, reproduction and other essential biological processes in insects and other arthropods through the receptor which is a heterodimer of two members of the nuclear receptors superfamily, the ecdysteroid receptor (EcR) and the Ultraspiracle (Usp). Although the transcriptionally active EcR/Usp heterocomplex is believed to be the only functional form of the receptor, there are data indicating that EcR may be involved in the mediation of the non-genomic effects outside of the nucleus. Since the nucleocytoplasmic shuttling could be a key element determining participation of the single nuclear receptor molecule both in the genomic and non-genomic functions we have analyzed nuclear import and export properties of the EcR and Usp from Drosophila melanogaster. We show for the first time that both receptors exhibit differential distribution of the nuclear localization and nuclear export signals (NLSs and NESs). In particular, the Usp which exhibits exclusively nuclear localization in all cell types analyzed, contains apparently only NLS activity within the DNA-binding domain. In contrast, the three known EcR isoforms (A, B1 and B2) are mosaics of elements which can potentially mediate their nucleocytoplasmic shuttling. We have found two active NESs in ligand binding domain and NLS activity within the DNA-binding domain of all isoforms. Simultaneously we demonstrate that B1 and A isoforms possess an additional NLS activity localized in AB regions. We speculate that this characteristic, along with the previously reported structural pliability of the EcR molecule, allows the single receptor to evoke many different genomic as well as non-genomic ecdysteroid-dependent responses.