Nitric-oxide synthase (NOS), the enzyme responsible for mammalian NO generation, is no cytochrome P450, but there are striking similarities between both enzymes. First and foremost, both are heme-thiolate proteins, employing the same prosthetic group to perform similar chemistry. Moreover, they share the same redox partner, a diflavoprotein reductase, which in the case of NOS is incorporated with the oxygenase in one polypeptide chain. There are, however, also conspicuous differences, such as the presence in NOS of the additional cofactor tetrahydrobiopterin, which is applied as an auxiliary electron donor to prevent decay of the oxyferrous complex to ferric heme and superoxide. In this review similarities and differences between NOS and cytochrome P450 are analyzed in an attempt to explain why NOS requires BH4 and why NO synthesis is not catalyzed by a member of the cytochrome P450 family.