Gel-free proteomics has emerged as a complement to conventional gel-based proteomics. Gel-free approaches focus on peptide or protein fractionation, but they do not address the efficiency of protein processing. We report the development of a microfluidic proteomic reactor that greatly simplifies the processing of complex proteomic samples by combining multiple proteomic steps. Rapid extraction and enrichment of proteins from complex proteomic samples or directly from cells are readily performed on the reactor. Furthermore, chemical and enzymatic treatments of proteins are performed in 50 nL effective volume, which results in an increased number of generated peptides. The products are compatible with mass spectrometry. We demonstrated that the proteomic reactor is at least 10 times more sensitive than current gel-free methodologies with one protein identified per 440 pg of protein lysate injected on the reactor. Furthermore, as little as 300 cells can be directly introduced on the proteomic reactor and analyzed by mass spectrometry.