We perform echo spectroscopy on ultracold atoms in atom-optics billiards to study their quantum dynamics. The detuning of the trapping laser is used to change the "perturbation", which causes a decay in the echo coherence. Two different regimes are observed: first, a perturbative regime in which the decay of echo coherence is nonmonotonic and partial revivals of coherence are observed in contrast with the predictions of random matrix theory. These revivals are more pronounced in traps with mixed dynamics as compared to traps where the dynamics is fully chaotic. Next, for stronger perturbations, the decay becomes monotonic and independent of the strength of the perturbation. In this regime no clear distinction can be made between chaotic traps and traps with mixed dynamics.