Background: Cytochrome P450 3A5 (CYP3A5) and ABCB1 polymorphisms have been shown to influence tacrolimus (Tc) blood concentrations in the stable phase after organ transplantation. We hypothesized that Tc pharmacokinetics may be affected by genetic mutations subsequent to starting doses.
Methods: We retrospectively analyzed data from a cohort of 59 kidney transplant recipients, in whom CYP3A5 (intron 3) and ABCB1 (exons 12, 21 and 26) genotypes were correlated to dose- and weight-standardized Tc trough concentrations obtained after initial Tc doses. Renal function, expressed as glomerular filtration rate (GFR) (MDRD equation), on days 7 and 14 after transplantation was evaluated and its relationship with Tc concentrations was analyzed.
Results: Dose- and weight-standardized Tc trough concentrations were lower in patients carrying the CYP3A5 *1 allele (p<0.01). There was no statistically significant association with ABCB1 polymorphisms. In a multivariate analysis, both the presence of at least one CYP3A5 *1 allele (p=0.006) and age at the time of transplantation (p=0.010) were significant independent variables affecting Tc trough blood concentrations standardized to the first dosages (model r2=0.23). GFR was not affected by Tc concentrations.
Conclusions: Prospective trials are needed to prove that a genetic approach to Tc pharmacokinetics and its related side effects during the early period after grafting may improve patient outcome.