Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. K562 human leukemia cells overexpress VEGF, with a shift in isoform production from membrane-bound VEGF189 to the more soluble VEGF165. In the present study, three 19 bp reverse repeated motifs targeting exons 5 and 7 boundary of VEGF165 gene sequence with 9 bp spacer were synthesized and cloned into eukaryotic expression plasmid pGenesil-1 containing U6 shRNA promoter and termination signal of RNA polymerase. The recombinant plasmids pGenesil-VR1, pGenesil-VR2, pGenesil-VR3 and pGenesil-con (plasmid containing random DNA fragment) were transfected into K562 cells, respectively, through lipofectamine reagent. A vector-based small interfering RNA(SiRNA) inhibited VEGF165 mRNA expression by 72% and protein production by 67% in K562 cells. Human microvascular endothelial cell migration induced by conditioned medium from VEGFsi-transfected K562 cells was significantly less than that induced by conditioned medium from K562 cells and control vector-transfected K562 cells. Furthermore, the VEGF shRNA dramatically suppressed tumor angiogenesis and tumor growth in a K562 s.c. xenograft model. Vessel density as assessed by vWF immunohistochemical analysis was also decreased. This strategy provides a novel tool to study the function of various VEGF isoforms and may contribute to VEGF-specific treatment in cancer.