In recent years, many studies have suggested a direct role for alpha 2-macroglobulin (alpha 2M), a plasma proteinase inhibitor, in growth factor regulation. When coincubated in the presence of either trypsin, pancreatic elastase, human neutrophil elastase, or plasmin, 125I-insulin rapidly formed a complex with alpha 2M which was greater than 80% covalent. The covalent binding was stable to reduction but abolished by competition with beta-aminopropionitrile. Neither native alpha 2M nor alpha 2M pretreated with proteinase or methylamine incorporated 125I-insulin. Experiments utilizing alpha 2M cross-linked with cis-dichlorodiammineplatinum(II) indicated that 125I-insulin must be present during alpha 2M conformational change to covalently bind. A maximum stoichiometry of 4 mol of insulin bound per mole of alpha 2M and the short half-life of the alpha 2M intermediate capable of covalent incorporation were consistent with thiol ester involvement. Protein sequence analysis of unlabeled insulin-alpha 2M complexes, together with results of beta-aminopropionitrile competition, confirmed that insulin incorporation occurs via the same gamma-glutamyl amide linkage responsible for covalent proteinase and methylamine binding to alpha 2M. Although intact insulin apparently incorporated through its sole lysine residue on the B chain, we found that isolated A chain also bound covalently to alpha 2M. Phenyl isothiocyanate derivatization of the N-terminus had no effect on A-chain binding, supporting the possibility of heretofore unreported gamma-glutamyl ester linkages to alpha 2M.