Proteinase inhibitors of the serpin superfamily may exist in one of three distinct conformations: the native form, a fully active protein with the reactive site loop intact; the proteolytically modified form in which inhibitory capacity is abolished; and the proteinase-complexed form, a stable equimolar complex between the inhibitor and a target proteinase. Here, the specificity and kinetics of the plasma elimination of different serpin conformations are compared. Proteinase-complexed serpins were rapidly cleared from the circulation. However, the native and modified forms were not cleared rapidly, indicating that the receptor-mediated pathways which recognize the complexes fail to recognize the native and modified forms. This result suggests that significant structural differences exist between modified and proteinase-complexed serpins. The structural differences were probed by using transverse urea gradient gel electrophoresis, a technique that allows comparisons of the conformational stabilities of proteins. With the exception of the noninhibitory serpins ovalbumin and angiotensinogen, the modified and proteinase-complexed serpins were both stabilized thermodynamically compared to the native forms. In addition, the proteinase component of the serpin-proteinase complex was usually thermodynamically stabilized. These data are used to compare the conformations of serpin-proteinase complexes with those of native and modified serpins; they are discussed in terms of a model whereby serpins inhibit proteinases in a manner similar to that described for other types of protein inhibitors of serine proteinases.