Aspergillus tubingensis isolates collected from distant geographic areas were earlier classified into six groups on the basis of the mtDNA RFLP variability they exhibited (mtDNA types 2a-2f). In the present work, we investigated the reason for the intraspecific mtDNA variability and we describe here how this fungus, with a relatively small mitochondrial genome, can display intraspecific polymorphism due to intron acquisition and also sporadic point mutations affecting the recognition motifs of the restriction enzymes employed in the RFLP analysis. Three different LAGLI-DADG type group I introns were identified in the cox1 gene amongst the six mtDNA RFLP types. MtDNAs of types 2b and 2d contain all of the three introns, mtDNA of type 2f carries only one, and the other mtDNA types contain two introns each. Comparative analysis showed that the first and second introns of mtDNAs of types 2b and 2d are well distributed among fungi, indicating their active horizontal transfer capacity. The third intron occurs rarely among fungi and is restricted to a limited number of fungal species, namely to A. tubingensis and the yeast Candida stellata. It is interesting that this intron is present in a small mitochondrial genome such as that of A. tubingensis and, considering its rarity, its presence amongst black Aspergillus isolates is recommended to be considered as a tool to establish taxonomical unit(s) or to track down evolutionary divergence of closely related taxonomical units.