To investigate the effects of the microstructure of collagenous carriers on the in vivo function of bone sialoprotein (BSP) in mineralization and osteoblast differentiation, we examined the ultrastructure of reconstituted type I collagen (collagen) and heat-denatured collagen (gelatin) and the in vivo responses to purified bone-derived BSP that was implanted with collagen or gelatin into surgically created 8-mm rat calvarial bone defects. Scanning and transmission electron microscopies revealed that the collagen displayed a fine fibrillar structure with interconnecting spaces between the fibrils/fibers, while the gelatin completely lost this unique three-dimensional structure after denaturation. The rates of in vivo release of BSP from the collagen scaffold were significantly lower than those from the gelatin. Collagen-BSP, but not gelatin-BSP, induced early mineral deposition in the matrix of proliferating repair cells in the calvarial defects at approximately 4-7 days after implantation. Expression levels of osteoblast markers, alkaline phosphatase activity and amounts of new bone synthesized in the collagen-BSP treated defects were significantly greater than that in the gelatin-BSP treated defects (p<0.001). The data suggest that the fibrillar microstructure of reconstituted collagen is essential for retaining BSP at a higher concentration within the defects, which enhances BSP-mediated matrix mineralization and osteoblast differentiation during the repair of rat calvarial defects.