Over the years, the anecdotal medical use of oxygen has demonstrated, in a non-evidence-based manner, that it may have wide-ranging clinical consequences. Although oxygen is a critical substrate in the alleviation of hypoxia, anoxia, and ischemia, paradoxically, it also functions as a deleterious metabolite during the reperfusion of previously ischemic tissues. In adding to this controversy, a spate of new pioneering work has identified hyperoxygenation (hyperoxia) and its metabolites as solely and purposefully demonstrating cellular and clinical benefit,particularly in the field of ischemic reperfusion injury (IRI). Furthermore, the beneficial effects of oxygen have been technologically augmented by administration at doses above atmospheric pressure and at higher concentrations. The novel technology that involves oxygen treatment at supra-atmospheric pressures in high concentrations is known as hyperbaric oxygen (HBO). Although the concept of hyperbaric oxygen has been around since the mid 20th century, it is only during the past decade or so that its therapeutic potential as a new technology-based drug has been exploited for the purposes of cellular tolerance and protection. HBO has recently been shown to be a useful adjunct in several models of IRI, including myocardial infarction. How it does this remains to be elucidated. This article attempts to bring into the spotlight some pertinent developments regarding HBO and myocardial IRI, while simultaneously stimulating intellect, thought, and discussion as to whether this novel technology--HBO--which consists of only a singular drug--oxygen--is a therapy that warrants further laboratory and clinical investigation as a therapeutic modality that may be safe and cost-effective, without producing significant adverse effects.