Cytolytic T lymphocytes (CTL) play an important role in defense against viral infections. Following clonal expansion and effector functions, a vast majority of the antigen-specific CTL undergoes programmed cell death to maintain homeostasis. We have shown earlier that melanoma epitope-specific CTL are quite sensitive to activation-induced cell death (AICD) even on the secondary encounter of the antigen. Excessive sensitivity of viral antigen-specific CTL to AICD, however, would be counterproductive. It might be argued that although CTL for a "self" epitope might be more prone to AICD for maintaining self-tolerance, viral antigen-specific CTL are likely to be less sensitive to AICD. We show here that influenza matrix protein-derived MP(58-66) epitope-specific CTL, activated in vitro and bearing a memory phenotype, are just as sensitive to AICD. The AICD in these CTL is not blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethylketone or by soluble Ig-Fc chimeras of the death receptors [Fas, TNF receptor (TNF-R), TRAIL-RI, TRAIL-RII]. However, the MP(58-66)-specific CTL can be rescued from AICD by the c-jun-N-terminal kinase (JNK) inhibitor SP600125. These results have implications for immunotherapeutic intervention in rescuing viral epitope-specific CTL from AICD.