Ectopic expression of the homeobox gene Cux-1 rescues calcineurin inhibition in mouse embryonic kidney cultures

Dev Dyn. 2007 Jan;236(1):184-91. doi: 10.1002/dvdy.21003.

Abstract

Cux-1 is a murine homeobox gene structurally related to Drosophila cut. Cux-1 is highly expressed in the nephrogenic zone of the developing kidney, where its expression coincides with cell proliferation. Cux-1 functions as a transcriptional repressor of the cyclin kinase inhibitors (CKI) p21 and p27. Cux-1 DNA binding activity is negatively regulated by phosphorylation, and dephosphorylation of Cux-1 results in increased DNA binding. Transgenic mice ectopically expressing Cux-1 develop renal hyperplasia associated with the down-regulation of the CKI p27. Calcineurin A (CnA) alpha (-/-) mice display renal hypoplasia associated with the ectopic expression of p27. CnA is a serine/threonine phosphatase activated by intracellular calcium. Inhibiting CnA with cyclosporin A (CsA) leads to nephron deficit in rat metanephric organ cultures and apoptosis in various renal cell lines. To determine whether the ectopic expression of p27 in CnA-alpha -/- kidneys results from the down-regulation of Cux-1, metanephroi from embryonic Cux-1 transgenic and wild-type mice were harvested and cultured with CsA for 5 days. CsA treatment significantly inhibited growth of wild-type metanephroi. In contrast, CsA-treated Cux-1 transgenic kidney cultures were not growth inhibited, but showed high levels of cell proliferation in the nephrogenic zone. Moreover, in CsA-treated Cux-1 transgenic kidney cultures, p27 was not expressed in the nephrogenic zone, but only up-regulated in maturing glomeruli and tubules. Taken together, our results demonstrate that ectopic expression of Cux-1 can rescue the effects of CsA inhibition of CnA and suggest that Cux-1 may be regulated by calcineurin A.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Calcineurin / metabolism
  • Calcineurin Inhibitors*
  • Cyclin-Dependent Kinase Inhibitor p27 / metabolism
  • Cyclosporine / pharmacology
  • Female
  • Gene Expression
  • Genes, Homeobox
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism*
  • Immunosuppressive Agents / pharmacology
  • Kidney / embryology*
  • Kidney / enzymology
  • Kidney / metabolism*
  • Mice
  • Mice, Transgenic
  • Models, Genetic
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Organ Culture Techniques
  • Pregnancy
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*

Substances

  • Calcineurin Inhibitors
  • Cux1 protein, mouse
  • Homeodomain Proteins
  • Immunosuppressive Agents
  • Nuclear Proteins
  • Repressor Proteins
  • Cyclin-Dependent Kinase Inhibitor p27
  • Cyclosporine
  • Calcineurin