In this paper, we present an approach for medical ultrasound (US) image enhancement. It is based on a novel perceptual saliency measure which favors smooth, long curves with constant curvature. The perceptual salient boundaries of tissues in US images are enhanced by computing the saliency of directional vectors in the image space, via a local searching algorithm. Our measure is generally determined by curvature changes, intensity gradient and the interaction of neighboring vectors. To restrain speckle noise during the enhancement process, an adaptive speckle suspension term is also combined into the proposed saliency measure. The results obtained on both simulated images and medical US data reveal superior performance of the novel approach over a number of commonly used speckle filters. Applications of US image segmentation show that although the proposed algorithm cannot remove the speckle noise completely and may discard weak anatomical structures in some case, it still provides a considerable gain to US image processing for computer-aided diagnosis.