Background: Matrix metalloproteinases (MMPs) have been reported to play crucial roles in the migration of inflammatory cells through basement membrane components. To confirm the role of mast cells as a source of MMPs, we investigated the production of MMP and its pathway in human cultured mast cells (HCMC). We also investigated the production of tissue inhibitors of metalloproteinase (TIMPs).
Methods: HCMC was stimulated with phorbor 12-miristate 13-acetate (PMA) and/or calcium ionophore A23187 (A23187), and the resulting MMP production was evaluated by gelatin zymography and western blotting. Expression of MMP and TIMP mRNA was also examined. Granulocyte macrophage-colony stimulating factor (GM-CSF) was measured by ELISA and activation of extracellular signal-regulated kinase (ERK) was evaluated by western blotting.
Results: We detected the de novo synthesis of MMP-9 in HCMC after stimulation with PMA and found that the synthesis was mediated through protein kinase C-mitogen activated protein kinase kinase (MEK)-ERK pathway. The MMP-9 production induced by PMA was suppressed by simultaneous treatment with A23187, whereas GM-CSF production was potentiated. We also detected the expression of mRNA for membrane-type 1 (MT1)-MMP, TIMP-1 and TIMP-2 after stimulation with PMA. Glucocorticoids and flavonoids inhibited MMP-9 production, and TIMPs and MMP inhibitors inhibited the gelatinolytic activity of mast cell-derived MMP-9. Furthermore, phenylmethylsulfonyl fluoride, a protease inhibitor, inhibited the conversion from proMMP-9 to active MMP-9.
Conclusions: These results suggest that the human mast cell is a leading member of MMP production, and the production, activation and activity are controllable by pharmacological agents.