Conservation planning for ecosystem services

PLoS Biol. 2006 Oct;4(11):e379. doi: 10.1371/journal.pbio.0040379.

Abstract

Despite increasing attention to the human dimension of conservation projects, a rigorous, systematic methodology for planning for ecosystem services has not been developed. This is in part because flows of ecosystem services remain poorly characterized at local-to-regional scales, and their protection has not generally been made a priority. We used a spatially explicit conservation planning framework to explore the trade-offs and opportunities for aligning conservation goals for biodiversity with six ecosystem services (carbon storage, flood control, forage production, outdoor recreation, crop pollination, and water provision) in the Central Coast ecoregion of California, United States. We found weak positive and some weak negative associations between the priority areas for biodiversity conservation and the flows of the six ecosystem services across the ecoregion. Excluding the two agriculture-focused services-crop pollination and forage production-eliminates all negative correlations. We compared the degree to which four contrasting conservation network designs protect biodiversity and the flow of the six services. We found that biodiversity conservation protects substantial collateral flows of services. Targeting ecosystem services directly can meet the multiple ecosystem services and biodiversity goals more efficiently but cannot substitute for targeted biodiversity protection (biodiversity losses of 44% relative to targeting biodiversity alone). Strategically targeting only biodiversity plus the four positively associated services offers much promise (relative biodiversity losses of 7%). Here we present an initial analytical framework for integrating biodiversity and ecosystem services in conservation planning and illustrate its application. We found that although there are important potential trade-offs between conservation for biodiversity and for ecosystem services, a systematic planning framework offers scope for identifying valuable synergies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity*
  • California
  • Conservation of Natural Resources / methods*
  • Ecosystem*
  • Geography
  • Humans
  • Water Supply