The present study shows for the first time the influence of exogenously applied amino acids and cytokinin on the physiological and molecular aspects of N metabolism in poplar trees. In a short-term feeding experiment, glutamine or trans-zeatin riboside (tZR) was added directly to the nutrient solution. NO3- net uptake declined significantly in response to both treatments. Feeding with glutamine brought about an increase in concentrations of different amino compounds in the roots (glutamine, glutamate, alanine, gamma-amino butyric acid (GABA) and NH4+, which negatively correlated with the net NO3- uptake. The plants showed a reduction of cytosolic glutamine synthetase 1 (GS1) transcript level in the roots. In addition, glutamine feeding changed the root-to-shoot distribution on N assimilation in favour of the leaves and plant internal N cycling. tZR treatment resulted in expansion of zeatin-type (Z-type) cytokinins in the roots and increased nitrate reductase (NR)-mRNA level. The results indicate that both particular amino acids and active cytokinins are involved in the feedback regulation of N uptake and metabolism in poplar. We propose that inhibition of N uptake by cytokinins in poplar is more complex than that mediated by amino compounds, and other effectors are involved in this regulation.