Objective: L-homocysteine and/or L-homocystine interact in vivo with albumin and other extracellular proteins by forming mixed-disulfide conjugates. Because of its extremely rich cysteine content, we hypothesized that metallothionein, a ubiquitous intracellular zinc-chaperone and superoxide anion radical scavenger, reacts with L-homocysteine and that homocysteinylated-metallothionein suffers loss of function.
Methods and results: 35S-homocysteinylated-metallothionein was resolved in lysates of cultured human aortic endothelial cells in the absence and presence of reduced glutathione by SDS-PAGE and identified by Western blotting and phosphorimaging. Using zinc-Sepharose chromatography, L-homocysteine was shown to impair the zinc-binding capacity of metallothionein even in the presence of reduced glutathione. L-Homocysteine induced a dose-dependent increase in intracellular free zinc in zinquin-loaded human aortic endothelial cells within 30 minutes, followed by the appearance of early growth response protein-1 within 60 minutes. In addition, intracellular reactive oxygen species dramatically increased 6 hours after L-homocysteine treatment. In vitro studies demonstrated that L-homocysteine is a potent inhibitor of the superoxide anion radical scavenging ability of metallothionein.
Conclusions: These studies provide the first evidence that L-homocysteine targets intracellular metallothionein by forming a mixed-disulfide conjugate and that loss of function occurs after homocysteinylation. The data support a novel mechanism for disruption of zinc and redox homeostasis.