The possible in vivo interaction of the Nicotiana tabacum agglutinin (Nictaba) with endogenous glycoproteins was corroborated using a combination of confocal/electron microscopy of an EGFP-Nictaba fusion protein expressed in tobacco Bright Yellow-2 (BY-2) cells and biochemical analyses. In vitro binding studies demonstrated that the expressed EGFP-Nictaba possesses carbohydrate-binding activity. Microscopic analyses confirmed the previously reported cytoplasmic/nuclear location of Nictaba in jasmonate-treated tobacco leaves and provided evidence for the involvement of a nuclear localization signal-dependent transport mechanism. In addition, it became evident that the lectin is not uniformly distributed over the nucleus and the cytoplasm of BY-2 cells. Far Western blot analysis of extracts from whole BY-2 cells and purified nuclei revealed that Nictaba interacts in a glycan inhibitable way with numerous proteins including many nuclear proteins. Enzymatic deglycosylation with PNGase F indicated that the observed interaction depends on the presence of N-glycans. Glycan array screening, which showed that Nictaba exhibits a strong affinity for high-mannose and complex N-glycans, provided a reasonable explanation for this observation. The cytoplasmic/nuclear localization of a plant lectin that has a high affinity for high-mannose and complex N-glycans and specifically interacts with conspecific glycoproteins suggests that N-glycosylated proteins might be more important in the cytoplasm and nucleus than is currently believed.