Previous literature reports have demonstrated that a number of human diseases, including inflammation and cancer, can be caused by environmental and occupational exposure to toxic compounds, via DNA damage, protein modifications, or lipid peroxidation. The present study was undertaken to screen the toxicity of a variety of chalcogens using erythrocytes as a model of cell injury. The toxicity of these compounds was evaluated via quantification of hemolysis and lipid peroxidation. The present investigation shows that diphenyl ditelluride and phenyl tellurides are toxic to erythrocytes. The organoselenium compounds were not toxic to erythrocytes even when tested at high concentrations and with a hematocrit of 45%. The hemolytic effect of tellurides was not positively correlated with thiobarbituric acid-reactive substance (TBARS) production suggesting that lipid peroxidation is not involved in the hemolysis provoked by organotellurium compounds. The results suggest that chalcogen compounds may be toxic to human erythrocytes, depending on their structure.