Purpose: 2-Methoxyestradiol (2ME), an estrogen metabolite, induces apoptosis in various cell types. We investigated whether 2ME pretreatment can radiosensitize colon adenocarcinoma cells.
Experimental design: Radiosensitizing effects of 2ME were evaluated by cell death, clonogenic assay, nuclear fragmentation, and tumor progression of xenografts. Ionizing radiation-induced DNA damage was evaluated by histone H2AX phosphorylation and its foci. The c-Jun NH2-terminal kinase (JNK) activation was evaluated by anti-phosphorylated JNK antibody and inhibited by the JNK-specific inhibitor SP600125 or dominant-negative SEK1 expression.
Results: Clonogenic assays revealed that 2ME, but not estradiol, radiosensitized three colon carcinoma cells, DLD-1, HCT-8, and HCT-15, and strongly suppressed tumor progression of DLD-1 xenografts. Gene transfer-mediated Bcl-xL overexpression largely abolished both augmented apoptosis and reduced survival fractions. Pretreatment with 2ME enhanced H2AX phosphorylation, its foci, and phosphorylation of ATM kinase and delayed re-entry of cell cycle progression after ionizing radiation. Augmentation of both radiosensitivity and H2AX phosphorylation was substantially reduced by SP600125 or overexpression of a dominant-negative mutant SEK1.
Conclusion: 2ME radiosensitized colon carcinoma cells through enhanced DNA damage via JNK activation, thereby representing a novel radiosensitizing therapy against colon cancer.