The effect of hyperthermia in vitro on vitality of rabbit preimplantation embryos

Physiol Res. 2007;56(6):789-796. doi: 10.33549/physiolres.931105. Epub 2006 Nov 6.

Abstract

The aim of our study was to test the influence of short exposure (6 h) of preimplantation rabbit embryos to elevated temperatures (41.5 degrees C or 42.5 degrees C) in vitro on their developmental capacity. Fertilized eggs recovered from female oviducts at the pronuclear stage (19 hpc) were cultured at standard temperature (37.5 degrees C) until the morula stage (72 hpc). Afterwards, the embryos were divided into two groups, cultured for 6 h either at hyperthermic (41.5 degrees C or 42.5 degrees C) or standard temperature (control 37.5 degrees C), post-incubated overnight (16-20 h) at 37.5 degrees C and then evaluated for developmental stages, apoptosis (TUNEL), proliferation (cell number), actin cytoskeleton and presence of heat-shock proteins Hsp70. It was observed that hyperthermia at 41.5 degrees C did not alter progression of embryos to higher preimplantation stages (expanded and hatching/hatched blastocysts), rate of apoptosis, total cell number of blastocysts and structure of actin filament compared to 37.5 degrees C. Western-blotting revealed the presence of heat stress-induced 72 kDa fraction of Hsp70 proteins in granulosa cells (exposed to 41 degrees C) and embryos (exposed to 41.5 degrees C). Following the elevation of temperature to 42.5 degrees C embryo development was dramatically compromised. The embryos were arrested at the morula or early blastocyst stage, showed an increased rate of apoptosis and decreased total cell number compared to control. The structure of actin filaments in most of blastomeres was damaged and such blastomeres often contained apoptotic nuclei. In this group a presence of heat-stress-induced fraction of Hsp70 proteins had not been confirmed. This is the first report demonstrating a threshold of thermotolerance of rabbit preimplantation embryos to hyperthermic exposure in vitro. A detrimental effect of higher temperature on the embryo is probably associated with the loss of their ability to produce Hsp70 de novo, which leads to cytoskeleton alterations and enhanced apoptosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Animals
  • Blastocyst / physiology*
  • Blotting, Western
  • Body Temperature / physiology
  • Cytoskeleton / metabolism
  • Female
  • Fever / physiopathology*
  • HSP70 Heat-Shock Proteins / metabolism
  • In Situ Nick-End Labeling
  • Pregnancy
  • Rabbits

Substances

  • Actins
  • HSP70 Heat-Shock Proteins