Rationale: Abnormality in the neurotrophic factor for dopamine neurons, epidermal growth factor (EGF), is associated with schizophrenia. Thus, rats treated with EGF as neonates are used as a putative animal model for schizophrenia showing impaired prepulse inhibition (PPI) and other cognitive deficits in the adult stage.
Objectives: To elucidate the abnormal behavioral traits of this animal model, the EGF effects on the dopaminergic system were analyzed pharmacologically and biochemically at the adult stage.
Results: We examined the effects of subthreshold doses of dopamine agonists on PPI in this model. A non-selective dopamine agonist, apomorphine (0.1 mg/kg), decreased PPI in EGF-treated rats, but not in controls. Further, a D(2)-like receptor agonist, quinpirole (0.01 and 0.03 mg/kg), similarly decreased PPI in EGF-treated rats but had no effect in the control animals. In contrast, a D(1)-like receptor agonist, SKF38393 (3 and 10 mg/kg), had no effect on PPI in both groups. To explore the molecular mechanism underlying the change in sensorimotor gating, we assessed D(1) and D(2) receptors expression in the prefrontal cortex, striatum and hippocampus and their downstream signaling. Although there were no significant differences in basal receptor levels, quinpirole administration significantly enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element binding protein (CREB) in the striatum of EGF-treated rats.
Conclusion: These results suggest that circulating EGF in the early development substantially influences D(2) receptor-dependent regulation of sensorimotor gating.