Herpes simplex virus type 1 (HSV-1)-infected human fibroblast (HSV-FS) targets are susceptible to lysis by natural killer (NK) cells, whereas uninfected FS are resistant to lysis. Studies were undertaken to determine the mechanism of this preferential susceptibility. HSV-FS were not intrinsically less stable than FS, as determined by a 51Cr release assay under hypotonic shock in the presence of rat granule cytolysin and by sensitivity to anti-human leukocyte antigen class I antibody plus complement. Single-cell assays in agarose demonstrated that although similar numbers of large granular lymphocytes bound to the HSV-FS and FS targets, the conjugates with HSV-FS were lysed at a much higher frequency than those with FS. These results suggested that both targets are bound by the NK cells but only the HSV-FS were able to trigger lysis. The requirement for active virus expression was demonstrated by failure of emetine-treated HSV-FS targets or targets infected with UV-inactivated HSV to be lysed by NK effectors. To evaluate the role of viral glycoproteins in conferring susceptibility to lysis, Fab were prepared from HSV-1-seropositive sera; these Fab were unable to block lysis of the HSV-FS. Furthermore, incubation in phosphonoacetic acid failed to reduce NK(HSV-FS) activity despite sharp reductions in viral glycoprotein synthesis. Finally, targets infected with tsLB2 at the nonpermissive temperature were lysed as well as or better than targets infected with wild-type virus, indicating that HSV immediate-early gene product expression is sufficient for conferring susceptibility to lysis. We conclude that expression of nonstructural viral proteins or virally induced cellular gene products early in the course of infection rather than structural glycoproteins is required for NK lysis of HSV-FS targets.