How animals adaptively respond to a cold or hot environment has been questioned for a long time. Recently, with the aid of microarray analysis, various temperature-sensitive genes have been identified in several species. However, a definitive hypothesis regarding the mechanism of adaptation has not been proposed. In the present study, we surveyed, in medaka (Oryzias latipes), genes for which the level of expression changes depending on the surrounding temperature. A messenger RNA differential display of medaka muscle total RNA revealed one such gene encoding transcription enhancer factor-1 (TEF-1). In medaka muscle, the TEF-1 gene produces two splicing variants, TEF-1A and TEF-1B mRNAs. During cold acclimation, the mRNA level of TEF-1A decreased, whereas that of TEF-1B increased. We also found that three putative downstream genes of TEF-1, two for myosin heavy chain (MyHC) and one for troponin T (TnT), a specific group of muscle proteins, were transcribed in a temperature-dependent manner. These results suggest that the transcription of MyHC and/or TnT is regulated by TEF-1 and that these molecules participate in muscle reconstruction during temperature adaptation in fish.