The physical association of HLA class I or H-2 molecules with 36 HIV-1 Nef synthetic peptides was studied using a direct peptide binding assay (PBA) in solid phase. To assess the functional significance of the PBA results, the Nef peptides were also tested for their ability to inhibit the lytic activity of human or murine CTL. The PBA results showed that seven partly overlapping regions of the Nef protein contained MHC binding peptides (4-18, 46-67, 73-94, 100-128, 126-155, 182-198, and 192-206). Five of these seven regions included all the already described epitopes recognized by CD8+ human CTL. The two other regions, 4-18 and 46-67, are not yet described as antigenic for human CD8+ cells but they are located in the N-terminal part of Nef that was previously described as being stimulator for rat or chimpanzee CD4+ cells. Altogether, it can be concluded that 1) In virtually 100% of the cases, the PBA is capable to detect known antigenic peptides recognized by CTL. 2) The PBA and the functional inhibition assay provide similar results, supporting the functional significance of PBA results. 3) The PBA is easy to handle on a large scale, using multiple peptide and several MHC molecules, so that it can be used as a routine method for prevision of possibly epitopic sequences. 4) Systematic studies of peptides issued from the whole sequence of a given protein allow to map polyepitopic areas that are probably the most interesting parts of proteins for a vaccine purpose.