Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1

J Biol Chem. 2007 Feb 9;282(6):3799-808. doi: 10.1074/jbc.M610185200. Epub 2006 Nov 27.

Abstract

Myostatin is a transforming growth factor beta superfamily member and is known as an inhibitor of skeletal muscle cell proliferation and differentiation. Exposure to myostatin induces G1 phase cell cycle arrest. In this study, we demonstrated that myostatin down-regulates Cdk4 activity via promotion of cyclin D1 degradation. Overexpression of cyclin D1 significantly blocked myostatin-induced proliferation inhibition. We further showed that phosphorylation at threonine 286 by GSK-3beta was required for myostatin-stimulated cyclin D1 nuclear export and degradation. This process is dependent upon the activin receptor IIB and the phosphatidylinositol 3-kinase/Akt pathway but not Smad3. Insulin-like growth factor 1 (IGF-1) treatment or Akt activation attenuated the myostatin-stimulated cyclin D1 degradation as well as the associated cell proliferation repression. In contrast, attenuation of IGF-1 signaling caused C2C12 cells to undergo apoptosis in response to myostatin treatment. The observation that IGF-1 treatment increases myostatin expression through a phosphatidylinositol 3-kinase pathway suggests a possible feedback regulation between IGF-1 and myostatin. These findings uncover a novel role for myostatin in the regulation of cell growth and cell death in concert with IGF-1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / physiology
  • Cell Cycle / physiology*
  • Cell Line
  • Cells, Cultured
  • Cyclin D1 / metabolism*
  • Glycogen Synthase Kinase 3 / physiology*
  • Glycogen Synthase Kinase 3 beta
  • Insulin-Like Growth Factor I / antagonists & inhibitors
  • Insulin-Like Growth Factor I / physiology*
  • MAP Kinase Signaling System / physiology
  • Mice
  • Mice, Knockout
  • Myostatin
  • Phosphatidylinositol 3-Kinases / physiology*
  • Phosphoinositide-3 Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / physiology*
  • Signal Transduction / physiology*
  • Transforming Growth Factor beta / antagonists & inhibitors
  • Transforming Growth Factor beta / biosynthesis
  • Transforming Growth Factor beta / physiology*

Substances

  • Mstn protein, mouse
  • Myostatin
  • Phosphoinositide-3 Kinase Inhibitors
  • Transforming Growth Factor beta
  • Cyclin D1
  • Insulin-Like Growth Factor I
  • Glycogen Synthase Kinase 3 beta
  • Gsk3b protein, mouse
  • Proto-Oncogene Proteins c-akt
  • Glycogen Synthase Kinase 3