Correcting ligands, metabolites, and pathways

BMC Bioinformatics. 2006 Nov 28:7:517. doi: 10.1186/1471-2105-7-517.

Abstract

Background: A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information.

Description: The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry) and that a considerable number (about one third) had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect) reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface.

Conclusion: We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and visualization. It is freely available at http://www.cmbi.ru.nl/biometa/ provided that the copyright notice of all original data is cited. The database will be useful for querying and browsing biochemical pathways, and to obtain reference information for identifying compounds. However, these applications require that the underlying data be correct, and that is the focus of BioMeta.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology
  • Databases, Factual*
  • Enzymes / chemistry*
  • Enzymes / metabolism
  • Internet
  • Ligands
  • Molecular Structure
  • Signal Transduction*
  • Software

Substances

  • Enzymes
  • Ligands