Activation-induced cell death (AICD) plays a pivotal role in self-tolerance by deleting autoreactive T cells, but a defect of AICD results in expansion of autoreactive T cells and is deeply involved in the pathogenesis of rheumatoid arthritis. Although the process of AICD is mainly mediated by Fas Ligand (FasL)/Fas signaling, it remains unclear what induces FasL expression on T cells. In the present study, we found that CD44 was the most potent stimulator of FasL expression on human peripheral T cells. CD44 cross-linking rapidly up-regulated FasL expression on the T cell surface by delivery from the cytoplasm without new FasL protein synthesis. This up-regulation of FasL was mediated by activation of a tyrosine kinase, IP3 receptor-dependent Ca(2+) mobilization and actin cytoskeletal rearrangements. Furthermore, AICD induced by CD3 restimulation was inhibited by hyaluronidase as well as by soluble Fas, indicating an interaction between membrane-bound hyaluronan and the cell surface CD44 was involved in the up-regulation of FasL expression on T cells and subsequent AICD. We therefore propose that the engagement of CD44 on T cells can eliminate autoreactive T cells by expression of FasL and FasL-mediated AICD.