Cloning of Atlantic halibut growth hormone receptor genes and quantitative gene expression during metamorphosis

Gen Comp Endocrinol. 2007 Apr;151(2):143-52. doi: 10.1016/j.ygcen.2006.10.003. Epub 2006 Dec 1.

Abstract

To gain insight into the possible regulatory role of the growth hormone (GH)-insulin-like growth factor I (IGF-I) system in flatfish metamorphosis, body GHR gene expression as well as IGF-I protein content was quantified in larval Atlantic halibut throughout metamorphosis (developmental stages 5-10). The cDNA of the full-length GH receptor (hhGHR) was cloned from adult liver and characterized. The hhGHR shows common features of a GHR, including a (Y/F)GEFS motif in the extracellular domain, a single transmembrane region, and an intracellular domain containing a Box 1 and Box 2. Additionally, a truncated GHR (hhGHRtr), similar to turbot and Japanese flounder GHRtr, was cloned and sequenced. These sequences are highly similar to the full-length and truncated GHRs in turbot (89%/86%) and Japanese flounder (93%/91%) with lower identity with other fish type I GHR (81%) and type II GHRs (58%). A quantitative real-time RT-PCR assay was used to measure hhGHR and hhGHRtr mRNA content in normally and abnormally metamorphosed individuals at six developmental stages, from early pre-metamorphosis to post-metamorphosis, when the fish is considered a juvenile. The level of hhGHR gene expression was highest at pre-metamorphic stage 6 and at stage 8 at the onset of metamorphosis, and then decreased during metamorphic climax and post-metamorphosis. Expression of hhGHRtr reached highest levels at stage 6 and then decreased to post-metamorphosis. The ratio of expression between the full-length and the truncated GHR (hhGHR:hhGHRtr) varied among stages and was highest at the onset of metamorphosis and at metamorphic climax. A radioimmunoassay was used to measure halibut IGF-I body content throughout metamorphosis. IGF-I increases from early metamorphosis to the onset of metamorphosis and then decreases towards post-metamorphosis. In comparison between normally and abnormally metamorphosing larvae, IGF-I content, hhGHR and hhGHRtr mRNA levels were reduced in the abnormal fish. These data indicate that the GH-IGF-I system either has a regulatory role in metamorphosis, or is being affected as a consequence of the abnormal metamorphosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Cloning, Molecular
  • Flounder / genetics*
  • Flounder / growth & development*
  • Flounder / metabolism
  • Gene Expression Regulation, Developmental*
  • Insulin-Like Growth Factor I / metabolism
  • Metamorphosis, Biological / genetics*
  • Molecular Sequence Data
  • Receptors, Somatotropin / genetics*
  • Receptors, Somatotropin / metabolism

Substances

  • Receptors, Somatotropin
  • Insulin-Like Growth Factor I