Animal studies have highlighted the potentially neuroprotective role of vascular endothelial growth factor (VEGF). Low levels of this growth factor have been found in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). VEGF (and other proteins, such as erythropoietin (EPO)) are produced in response to hypoxia via a common pathway involving a specific transcription factor (hypoxia-inducible factor, HIF) and a hypoxia responsive element (HRE) in the respective genes' promoter regions. In this study, we report finding the expected, high levels of VEGF and EPO in CSF from hypoxemic neurological controls, whereas EPO (but not VEGF) levels are high in the CSF from hypoxemic ALS patients. Hence, the VEGF levels in CSF from patients with ALS were significantly lower than those seen in hypoxemic controls. There was a trend towards higher CSF levels of EPO in hypoxemic ALS patients than in hypoxemic controls. Our results suggest that VEGF may not be produced in sufficient amounts in chronically hypoxic ALS patients and that this dysfunction may participate in the pathogenesis of the disease. The high EPO levels in hypoxemic ALS patients nevertheless suggest an intact common oxygen-sensor pathway.