Pontine omnipause neurons (OPNs) are inhibitory neurons projecting to saccade-related premotor burst neurons. OPNs exhibit sustained discharge during fixations and cease firing before and during saccades. The pause in OPN discharge releases the burst neurons from tonic inhibition, resulting in generation of saccadic eye movements. OPNs are thought to receive two major inhibitory inputs during saccades: an early component that determines the pause onset and a late component that controls the pause duration. Although there is evidence that numerous glycinergic and GABAergic terminals contact OPNs, their physiological roles remain unclear. To reveal functions of glycinergic and GABAergic inputs, we investigated effects of iontophoretic application of strychnine, a glycine receptor antagonist, and bicuculline, a GABAA receptor antagonist, on discharge patterns of OPNs in alert cats. Application of strychnine reduced the ratio of pause duration to saccade duration. Analysis of the timing of pause relative to saccades showed that pause onset was delayed and pause end was advanced. These effects were observed for saccades in all directions. Application of bicuculline, in contrast, had no effect on the OPN pause duration or timing. Both strychnine and bicuculline increased tonic firing rate during intersaccadic intervals. These results suggest that glycinergic, but not GABAergic, afferents convey inhibitory signals that determine the onset as well as duration of pause in OPN activity during saccades.