Objective: To explore the specificity of anti-phosphotyrosine monoclonal antibody PY20 in bcr-abl+ cells and its possible clinical applications.
Methods: Bcr-abl cell lines( K562, MEG-01) and bcr-abl- cells lines( Jurkat, MCF-7 )were stained with PY20. Phosphotyrosine protein of K562 and MEG-01 cells was detected by flow cytometry before and after treatment with imatinib. Phosphotyrosine protein in bone marrow cells from 49 patients with chronic myeloid leukemia (CML), Ph+ acute lymphoblastic leukemia(Ph(+) -ALL), Ph- ALL, acute myeloid leukemia (AML-M1, M2, M3, M5, FAB classification), chronic lymphocytic leukemia (CML) and 3 normal donor. Positive cells over 5% of total cells was considered positive cases for phosphotyrosine protein. The level of tyrosine phosphorylation was determined by median fluorescence intensity (MFI).
Results: Bcr-abl cell lines and marrow cells from 10 CML patients and 8 ALL patients were all PY20-positive, while bcr-abl- cell lines and marrow cells from 18 leukemia patients and 3 normal donor were all PY20-negative. MFI decreased remarkably after blocked by imatinib in K562 cells and MEG-01 cells. The positive cell percent of marrow cells from 10 newly diagnosed CML patients and 9 imatinib-sensitive CML patients was (54.20 +/- 19.82)% and (14.84 +/- 6.17)% (P < 0.05), while that of 2 cases of imatinib-resistant was 64.3% and 57.2%. There was significant difference of MFI between imatinib-resistant patients and imatinib-sensitive patients (99.42 +/- 4.87 vs 46.41 +/- 4.67, P < 0.01).
Conclusion: PY20 monoclonal antibody is highly specific for bcr-abl+ cells. It might be useful in rapid detection of bcr-abl+ cells and sensitivity to imatinib of CML patients.