The effects of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and the dihydropyridine calcium antagonist nimodipine on NMDA-induced phenomena were investigated using an in vivo fluorometric technique with indo-1. Indo-1, a fluorescent cytosolic free calcium ([Ca2+]i) indicator, was loaded into the cat cortex approximately 500 microns in depth by superfusion with the membrane-permeant indo-1 acetoxy-methyl ester (indo-1-AM). Changes in [Ca2+]i signals (400 and 506 nm) and reduced nicotinamide adenine dinucleotide (NADH) fluorescence (464 nm) were simultaneously measured directly from the cortex during ultraviolet excitation (340 nm). Superfusion of 100 microM NMDA over the exposed cortex induced an elevation of the [Ca2+]i signal ratio (400/506 nm), biphasic changes in NAD/NADH redox state (initial oxidation followed by progressive reduction), and characteristic changes in the EEG (abrupt depression in amplitude followed by an excitatory pattern of 18-22 Hz polyspikes or sharp waves). These changes were completely blocked by treatment with MK-801 and reduced by nimodipine. The mechanism underlying the protective effects of systemically administered MK-801 on the NMDA-induced neuronal injury was verified in vivo.