In contrast to most human malignancies, epidemiologic studies have frequently reported a reduced risk of differentiated thyroid cancer in tobacco consumers. Cytochrome P4501A1 (CYP1A1) gene variants may be related to an increased capacity to activate polycyclic aromatic hydrocarbons, producing highly reactive electrophilic intermediates that might damage DNA. Hence, the germline inheritance of a wild-type CYP1A1 gene may decrease the susceptibility for thyroid cancer. The present study was designed to investigate CYP1A1 (m1 and m2) role in thyroid tumorigenesis and its connection with GSTM1, GSTT1, GSTP1, GSTO1, and codon 72 of p53 genotypes. A total of 248 patients with thyroid nodules, including 67 benign goiters, 13 follicular adenomas, 136 papillary carcinomas, and 32 follicular carcinomas, and 277 controls with similar ethnic backgrounds were interviewed on their lifetime dietary and occupational histories, smoking habit, previous diseases, and other anamnestic data. DNA was extracted from a blood sample and submitted to PCR-restriction fragment length polymorphism assays. The wild-type CYP1A1m1 genotype was more frequent among papillary carcinoma patients (74.26%) than in the control population (62.45%; P=0.0147), reducing the risk for this type of cancer (odds ratio=0.564; 95% confidence interval=0.357-0.894). A multiple logistic regression analysis showed an inverse correlation between cigarette smoking (P=0.0385) and CYP1A1 germline inheritance (P=0.0237) with the susceptibility to papillary carcinomas. We were not able to find any correlation between smoking, clinical features, parameters of aggressiveness at diagnosis or during follow-up, and any of the GST or CYP genotypes considered separately or in different combinations. We suggest that CYP1A1 genotype might be associated with the reported reduced risk to papillary carcinomas among smokers.