Resonance Raman spectra were obtained for 2-nitrophenol in cyclohexane solution with excitation wavelengths in resonance with the charge-transfer (CT) proton transfer band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion along more than 15 normal modes: the nominal CCH bend+CC stretch nu(12) (1326 cm(-1)), the nominal CCC bend nu(23) (564 cm(-1)), the nominal CO stretch+NO stretch+CC stretch nu(14) (1250 cm(-1)), the nominal CCH bend+CC stretch+COH bend nu(15) (1190 cm(-1)); the nominal CCH bend+CC stretch nu(17) (1134 cm(-1)), the nominal CCC bend+CC stretch nu(22) (669 cm(-1)), the nominal CCN bend nu(27) (290 cm(-1)), the nominal NO(2) bend+CC stretch nu(21) (820 cm(-1)), the nominal CCO bend+CNO bend nu(25) (428 cm(-1)), the nominal CC stretch nu(7) (1590 cm(-1)), the nominal NO stretch nu(8) (1538 cm(-1)), the nominal CCC bend+NO(2) bend nu(20) (870 cm(-1)), the nominal CC stretch nu(6) (1617 cm(-1)), the nominal COH bend+CC stretch nu(11) (1382 cm(-1)), nominal CCH bend+CC stretch nu(9) (1472 cm(-1)). A preliminary resonance Raman intensity analysis was done and the results for 2-nitrophenol were compared to previously reported results for nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone. The authors briefly discuss the differences and similarities in the CT-band absorption excitation of 2-nitrophenol relative to those of nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone.