Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers

Science. 2006 Dec 15;314(5806):1761-4. doi: 10.1126/science.1134441.

Abstract

Controlled self-assembly of a trinitrofluorenone-appended gemini-shaped amphiphilic hexabenzocoronene selectively formed nanotubes or microfibers with different photochemical properties. In these nanotubes, which are 16 nanometers in diameter and several micrometers long, a molecular layer of electron-accepting trinitrofluorenone laminates an electron-donating graphitic layer of pi-stacked hexabenzocoronene. The coaxial nanotubular structure allows photochemical generation of spatially separated charge carriers and a quick photoconductive response with a large on/off ratio greater than 10(4). In sharp contrast, the microfibers consist of a charge-transfer complex between the hexabenzocoronene and trinitrofluorenone parts and exhibit almost no photocurrent generation.