Perinatal size and maturation of the olfactory and vomeronasal neuroepithelia in lorisoids and lemuroids

Am J Primatol. 2007 Jan;69(1):74-85. doi: 10.1002/ajp.20328.

Abstract

Explanations for the chemosensory abilities of newborn mammals focus primarily on food (milk) acquisition and communication (e.g., maternal-infant bonding). However, the relative importance of the main and accessory (vomeronasal) olfactory systems is hypothesized to differ at birth between altricial and precocial mammals. Strepsirrhines (lemurs and lorises) possess main and accessory olfactory systems, and vary in life-history traits related to infant dependency and maturation. Accordingly, this study examines the size and maturational characteristics of vomeronasal (VNNE) and olfactory (OE) neuroepithelia in strepsirrhines. Serially sectioned heads of 18 infant cadavers were examined microscopically for neuroepithelial distribution. Measurements were taken on the length of the nasal fossa on one side that was occupied by VNNE and OE. The data were corrected for body size using the cranial length or body mass, and were then examined for correlation with several life-history variables, as well as activity pattern. In addition, immunohistochemistry was used to identify cells in the VNNE and OE that express olfactory marker protein (OMP), a marker of mature olfactory neurons. Relative OE extent was not significantly correlated with any of the life-history variables. Relative VNNE length was negatively correlated with relative gestation length and relative neonatal mass (P<0.05). However, when we corrected for phylogenetic relationships, we found no significant correlations between either of the neuroepithelial measurements and life-history variables. Immunohistochemical findings suggest that OE has more OMP-reactive cells than VNNE in all species. OMP-reactive cells appear to be less numerous in diurnal species compared to most nocturnal species. These results indicate that the VNNE may be relatively longer at birth in altricial species. However, it remains uncertain how phylogeny and/or ontogeny may explain these findings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Birth Weight / physiology*
  • Circadian Rhythm / physiology*
  • Gestational Age
  • Nesting Behavior
  • Olfactory Receptor Neurons / anatomy & histology*
  • Olfactory Receptor Neurons / growth & development
  • Strepsirhini / anatomy & histology
  • Strepsirhini / growth & development*
  • Strepsirhini / physiology
  • Vomeronasal Organ / anatomy & histology*
  • Vomeronasal Organ / growth & development
  • Weaning