Synthesis, spectroscopic, and structural investigation of the cyclic [N(PR2E)2]+ cations (E = Se, Te; R = iPr, Ph): the effect of anion and R-group exchange

Inorg Chem. 2006 Dec 25;45(26):10678-87. doi: 10.1021/ic061545i.

Abstract

Two-electron oxidation of the [N(PiPr2E)2]- anion with iodine produces the cyclic [N(PiPr2E)2]+ (E =Se, Te) cations, which exhibit long E-E bonds in the iodide salts [N(PiPr2Se)2]I (4) and [N(PiPr2Te)2]I (5). The iodide salts 4 and 5 are converted to the ion-separated salts [N(PiPr2Se)2]SbF6 (6) and [N(PiPr2Te)2]SbF6 (7) upon treatment with AgSbF6. Compounds 4-7 were characterized in solution by multinuclear NMR, vibrational, and UV-visible spectroscopy supported by DFT calculations. A structural comparison of salts 4-7 and [N(PiPr2Te)2]Cl (8) confirms that the long E-E bonds in 4, 5, and 8 can be attributed primarily to the donation of electron density from a lone pair of the halide counterion into the E-E sigma* orbital (LUMO) of the cation. The phenyl derivative [N(PPh2Te)2]I (9) was prepared in a similar manner. However, the attempted synthesis of the selenium analogue, [N(PPh2Se)2]I, produced a 1:1 mixture of [N(PPh2Se)2(mu-Se)][I] (10) and [SeP(Ph2)N(Ph2)PI] (11). DFT calculations of the formation energies of 10 and 11 support the observed decomposition. Compound 10 is a centrosymmetric dimer in which two six-membered NP2Se3 rings are bridged by two I- anions. Compound 11 produces the nine-atom chain {[N(PPh2)2Se]2(mu-O)} (12) upon hydrolysis during crystallization. The reaction between [(TMEDA)NaN(PiPr2Se)2] and SeCl2 in a 1:1 molar ratio yields the related acyclic species [SeP(iPr2)N(iPr2)PCl] (13), which was characterized by multinuclear NMR spectroscopy and an X-ray structural determination.